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Abstract. Over the last decades, the Amazon rainforest was hit by multiple severe drought events. Here we assess the 

severity and spatial extent of the extreme drought years 2005, 2010, and 2015/2016 in the Amazon region and their impacts 

on the carbon cycle. As an indicator of drought stress in the Amazon rainforest, we use the widely applied maximum 

cumulative water deficit (ΔMCWD). Evaluating an ensemble of ten state-of-the-art precipitation datasets for the Amazon 25 

region, we find that the spatial extent of the drought in 2005 ranges from 2.8 to 4.2 (mean = 3.2) million km² (46 – 71% of 

the Amazon basin, mean = 53%) where ΔMCWD indicates at least moderate drought conditions (ΔMCWD anomaly < 25 

mm). In 2010, the affected area was about 16% larger, ranging from 3.1 up to 4.6 (mean = 3.7) million km² (52 – 78%, mean 

= 63%). In 2016, the mean area affected by drought stress was similar to 2005 (mean = 3.2 million km²; 55% of the Amazon 

basin), but the general disagreement between data sets was larger, ranging from 2.4 up to 4.1 million km² (40–70%). In 30 

addition, we compare differences and similarities among datasets using the self-calibrating Palmer Drought Severity Index 

(scPDSI) and a rainfall anomaly index (RAI). We find that scPDSI shows a much stronger, and RAI a much weaker drought 

impact in terms of extent and severity for 2016 compared to ΔMCWD.  Using an empirical ΔMCWD-mortality relationship, 

we calculate biomass losses of the three drought events. We show that eight of ten datasets agree on biomass losses of about 

1.8 PgC for the drought years 2005 and 2010, indicating that the more intense drought in 2005 equals a larger total area of 35 

the 2010 drought regarding biomass loss. For the 2015/2016 drought event, datasets show a large variability of biomass loss 

induced by drought stress ranging from 1.3 to 2.7 PgC with a mean loss of 1.8 PgC. Disagreement across datasets increased, 

(1) when comparing the total area of more severe and extreme drought signals and (2) when comparing spatial drought 

location across datasets. Generally, only half of the datasets agreed on the location of a drought event. We conclude that for 

deriving impacts of droughts to the Amazon Basin based on precipitation, an ensemble of datasets should be considered. 40 

This is especially relevant when assessing the impact of drought on the Amazon rainforest and its carbon cycle. 
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1 Introduction 

The severe drought events occurring in 2005, 2010 and 2015/16 in the Amazon basin are reasons for concern regarding their 

frequency and severity, and their impacts on the Amazon rainforest. Different large-scale atmospheric processes related to 45 

increased sea surface temperature (SST) in the Pacific and the Atlantic Ocean seem to be responsible for such repeated 

mega-drought events (Coelho et al., 2012): While the drought 2015/16 was driven by a record-level El Niño event enhanced 

by the strong underlying global warming trend (Jimenez et al., 2018), the 2010 drought was a combination of a moderate El 

Niño event and anomalously warm SSTs in the tropical North Atlantic (Marengo & Espinoza, 2016; Marengo et al., 2011). 

Similarly, the 2005 drought was attributed to anomalies of warm SSTs in the North Atlantic (Marengo et al., 2008; Zeng et 50 

al., 2008). In consequence, such events differ in their strength, their timing and spatial patterns, and thus, impacted regions 

differ. While drought events related to El Niño events show a Southwest to Northeast gradient with dry conditions over the 

NE Amazon region (Malhi et al., 2008), drought events caused by anomalously warm North Atlantic SSTs show a North-

South gradient with dry conditions in the southern Amazon region (Lewis et al., 2011; Marengo et al., 2008). Even in the 

case of El Niño events, SSTs anomalies over the Eastern Pacific (EP) or the Central Pacific (CP) can lead to different 55 

impacts and spatial patterns of drought (Jimenez et al., 2019). In addition to their influence on temperature, recent El Niño 

events also showed amplified atmospheric vapor pressure deficit anomalies (Barkhordarian et al., 2019; Rifai et al., 2019). 

The impacts of such drought events on humid tropical forests, which are often not adapted to longer-lasting dryness, are 

severe. Increased forest mortality connected to drought events was observed in central and southern Amazonia (Lewis et al., 

2011; Phillips et al., 2009), as well as shifts in tree species composition (Esquivel‐Muelbert et al., 2019). Droughts are 60 

assumed to be one of the main drivers for the observed decline in the Amazon carbon sink, indicating that more carbon is 

lost to the atmosphere than taken up by the forest (Hubau et al., 2020). Thus, such extreme drought events are altering the 

carbon cycle of the Amazon forest already today (Gloor et al., 2015; Hubau et al., 2020; Phillips et al., 2009). 

Losing tropical forests in the Amazon region through increased mortality under drought also has implications for regional 

and continental scale water cycling (Ruiz-Vásquez et al., 2020). The rainforest transpires enormous amounts of water which 65 

is transported by winds to remote regions far beyond the borders of the rainforest (e.g. Dirmeyer et al., 2009; van der Ent et 

al., 2010; D. C. Zemp et al., 2014; Zemp et al., 2017a). In addition, the ongoing deforestation in the Amazon rainforest 

further decreases forest cover and thus, transpiration rates, leading to a rainfall decline and enhanced drought conditions in a 

positive feedback loop (Miralles et al., 2019; D. C. Zemp et al., 2017a; Zemp et al., 2017b). It can be expected that ongoing 

climate change most likely will cause stronger and more frequent drought events in the Amazon (Cai et al., 2015; Jia et al., 70 

2019; Marengo & Espinoza, 2016). 

For assessing the severity, the spatial extent and, in particular, the impacts of such drought events on existing ecosystems, 

different gridded precipitation datasets are available which in some cases differ strongly in magnitude and spatio-temporal 

distribution of precipitation amounts (Golian et al., 2019). Typical problems of precipitation data for South America 

encompass the underestimation of extreme rainfall events in both dry or wet seasons (Blacutt et al., 2015; Giles et al., 2020). 75 
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Therefore, while for the Amazon region, the recent drought events have been assessed in terms of severity (Jiménez-Muñoz 

et al., 2016; Jimenez et al., 2018) and impacts (Phillips et al. 2009, Lewis et al. 2011) based on single precipitation data sets, 

a systematic analysis of how the most frequent used precipitation datasets differ regarding the spatial extent, location and 

severity of recent extreme drought events, is currently missing. 

For our study, we selected ten precipitation datasets: (1, 2) Data from the Tropical Rainfall Measurement Mission (TRMM) 80 

version 6 and 7 (Huffman et al., 2007) which have been frequently used, e.g. to estimate drought impacts on the carbon 

balance (Lewis et al., 2011; Malhi et al., 2009) and are assumed to represent precipitation patterns in the Amazon region best 

since they are derived from radar measurements (Huffman et al., 2007). (3) CHIRPS (Climate Hazards group Infrared 

Precipitation with Stations, Espinoza et al., 2019), which has been used to study regional hydro-climatic and environmental 

changes in the Amazon Basin. These two datasets only provide precipitation and no information about other climatic 85 

variables such as temperature or radiation. In addition, we selected five datasets that are often used as drivers for ecosystem 

models (e.g. in Forkel et al., 2019; Yang et al., 2015) and – in contrast to the other datasets – provide information about other 

climate variables: Data from the Climate Research Unit (CRU) with a joint project reanalysis (NCEP, National Centers for 

Environmental Prediction) applied, (4) the CRUNCEP (version 8, Viovy, 2018), (5) the WATCH-WFDEI  (WATCH: Water 

and Global Change, Weedon et al., 2011. WFDEI: WATCH Forcing Data methodology applied to ERA-Interim, Weedon et 90 

al., 2014) dataset, originally derived from global sub-daily observations merged with integrations from a general circulation 

model, (6) the GSWP3 (Global Soil Wetness phase 3, Kim et al. in prep) dataset which is closely related to WATCH-

WFDEI, relying on a similar forcing but with a different bias correction applied, (7) the newer GLDAS s(Global Land Data 

Assimilation System) 2.1. which is derived from various geostationary infrared satellite measurements and microwave 

observations (Rodell et al., 2004), (8) the ERA-Interim dataset which is generated using a forecast model driven with 95 

different input datasets (Dee et al., 2011), (9) the latest ECMWF atmospheric reanalysis dataset, ERA5, which is the 

successor of ERA-Interim, providing higher spatial and temporal resolutions and a more recent model and data assimilation 

system than the previous ERA-Interim reanalysis (Albergel et al., 2018), and, finally, (10) the GPCC (named after the Global 

Precipitation Climatology Centre) dataset (Schneider et al., 2018), which is based on globally available land stations (rain 

gauges) combined with an empirical interpolation method (Willmott et al., 1985). A more detailed description of the datasets 100 

is given in the methods section. 

We evaluate the precipitation datasets based on the Maximum Cumulative Water Deficit (MCWD; Aragão et al., 2007), a 

well-established drought index that is particularly suitable for estimating drought stress in the Amazon region (e.g. Esquivel‐

Muelbert et al., 2019; Lewis et al., 2011; Y. Malhi et al., 2009; Phillips et al., 2009; Zang et al., 2020). In addition, we 

included two other measures to complement our analysis: Rainfall anomaly index (RAI), which does account for the mean 105 

deviation (in units of standard deviation) of precipitation during the driest months of the year and scPDSI (self-calibrating 

Palmer Drought Index, Wells et al., 2004). scPDSI has a more complex formulation compared to RAI and MCWD and takes 

available soil water content into account. Both RAI and scPDSI have been used in studies describing the recent Amazonian 

drought events (e.g. Jiménez-Muñoz et al., 2016; Lewis et al., 2011).  
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The goals of our study are (1) to analyze and quantify the uncertainty in drought strength, extent and location of three recent 110 

Amazon droughts in the years 2005, 2010 and 2015/2016 in ten state-of-the-art precipitation datasets based on MCWD; (2) 

to examine differences among these drought events by taking two additional drought indicators RAI and scPDSI into 

account; and (3) give an estimate of the impacts of the three drought events on the carbon cycle by estimating potential 

biomass losses.  

  115 
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2 Methods 

2.1 Study area 

Our study covers the Amazon river basin as delineated by Döll & Lehner (2002, see black contour in Fig. 1). Using 0.5° 

spatial resolution in longitude and latitude results in 1946 grid cells of interest for this study area. To compare spatial 

differences of drought extent in more detail, we subdivided the Amazon Basin into 13 regions based on countries and 120 

Brazilian states intersecting with the area (SI Fig. 1). Note that differences in the comparison of our results with Lewis et al. 

(2011) arise because of differences in the delineation of the Amazon region, i.e. the area used in our study is 0.6 Mio km² 

larger. 

2.2 Data sources 

In the following, we briefly describe the ten precipitation datasets applied in our study (see also Table 1):  The Tropical 125 

Rainfall Measuring Mission (TRMM v7) product (Huffman et al., 2007) is a precipitation-only dataset based on multiple 

microwave-infrared satellite data developed as a joint product between NASA and the Japan Aerospace Exploration Agency 

(JAXA). We also included the predecessor v6 for comparison in our study, because it has been frequently and prominently 

used to derive drought impacts to the Amazon Basin (e.g. Lewis et al., 2011; Phillips et al., 2009) and shows significantly 

lower precipitation throughout the basin compared to v7 (Seto et al., 2011). Both TRMM datasets are from now on denoted 130 

as TR6 and TR7. CHIRPS (Climate Hazards group Infrared Precipitation with Station) is a novel dataset (Funk et al., 2015 

from now on denoted CHR) which is a quasi-global (full longitude, but only 50°S – 50°N latitude extent) precipitation-only 

merged product, based on multi-satellite estimates (similar to TR6 and TR7) and approx. 2,000 in-situ observations per 

month in South America. TR6, TR7 and CHR share the quasi-global spatial extent, however, in comparison to TR6 and TR7 

with a resolution of 0.25° x 0.25°, CHR has a much higher spatial resolution of 0.05° x 0.05°. ERA-Interim (from now on 135 

denoted as ERI) is an atmospheric model that assimilates observation-based estimates from the GPCP-dataset (Adler et al., 

2003) of the atmosphere during runtime (Dee et al., 2011). Although ERI might show some anomalies in tropical biomes (Di 

Giuseppe et al., 2013), it has been used for drought evaluation of the Amazon rainforest (Jiménez-Muñoz et al., 2016) and 

also as a forcing dataset for dynamic vegetation models (DVMs; e.g. Maignan et al., 2011; Poulter et al., 2011).  ERA5 

(Muñoz-Sabater et al., 2018), from now on denoted as ER5, shows improvements in, e.g., land evapotranspiration, surface 140 

soil moisture and turbulent heat fluxes over its predecessor ERI (Albergel et al., 2018). Similarly, CRUNCEP (Viovy, 2018 

from now on denoted as CRU) is generated based on a reanalysis from the national centers for environmental prediction 

(NCEP) and the National Center for Atmospheric Research (NCAR), corrected with the CRU TS3.2 (Harris et al., 2014) 

dataset. GPCC (from now on denoted as GPC) is mainly based on data from rain gauge land stations. Similar to CRU, it is 

also based on a reanalysis and has been used in global drought studies (Ziese et al., 2014). Both GPC and CRU cover the 145 

longest periods of all selected datasets in this study with timespans from 1891 until 2016 and from 1901 until 2016, 

respectively.  WATCH-WFDEI (denoted as WAT from now on; Weedon et al., 2011; 2014) is based on the reanalysis ERI 
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corrected with GPC precipitation. GSWP3 (Kim et al. in prep; from now on denoted as GSW) is based on the atmospheric 

reanalysis method “20CR” (20th Century Reanalysis version 2, Compo et al., 2013), which has been dynamically 

downscaled to 0.5° x 0.5° resolution. Corrections with observational data have not only been applied to precipitation but also 150 

to short/longwave radiation, air temperature and the daily temperature range. Both WAT and GSW end in the year 2010. The 

GLDAS 2.1 (from now on denoted as GLD) dataset is built by using the ‘Noah Land surface model’ forced by the Goddard 

Earth Observing System (GEOS) Data Assimilation System with corrected precipitation and radiation (Rodell et al., 2004; 

Sheffield et al., 2006). Starting in January 2000 (Version 2.1), it is the dataset with the latest time onset and hence defines 

the lower-bound time interval considered in this study. For the 2015/2016 drought event, only seven datasets were available 155 

as three of the datasets (TR6, GSW and WAT) end before. All datasets were (if not directly available) converted to 0.5° x 

0.5° spatial resolution and to monthly time steps. 

2.3. Drought indices and evaluation of drought area and extent 

2.3.1 Calculation of maximum climatological water deficit (MCWD) 

We calculate MCWD based on Aragão et al. (2007) defining water deficit (WD) as follows: 160 

𝑊𝐷(𝑡) = 𝑃(𝑡) − 𝐸𝑇(𝑡),             (1) 

where  𝑊𝐷(𝑡) stands for water deficit, which is calculated for a time step t, in this case for a monthly time step, 𝑃(𝑡) for 

monthly precipitation and 𝐸𝑇(𝑡) for monthly evapotranspiration. To estimate the impacts of persistent drought events, the 

cumulative water deficit (𝐶𝑊𝐷) is defined as the accumulation of water deficit of each month of the hydrological year (see 

below for details) for which 𝑃(𝑡) is smaller than 𝐸𝑇(𝑡),  hence 𝑊𝐷(𝑡) is negative.  MCWD is the most negative value of 165 

𝐶𝑊𝐷( t) over a specific period. For a complete mathematical definition, see Supporting Information Methods S1. As 

proposed by Aragão et al. (2007), we use a fixed value for 𝐸𝑇(𝑡) = 𝐸𝑇𝑓𝑖𝑥𝑒𝑑 = 100 mm month-1 derived from ground 

measurements of evapotranspiration in different locations and seasons in Amazonia (von Randow et al., 2004; da Rocha et 

al., 2004). As a result, water deficit builds up whenever the monthly rainfall 𝑃(𝑡) falls below 100 mm.  

We calculate annual MCWD for the hydrological year from October of the previous year to September of the succeeding 170 

year, e.g. the MCWD for the year 2000 is calculated from October 1999 to September 2000 (similar to Lewis et al., 2011). 

Similarly, for deriving the drought severity, we calculated the MCWD anomaly (ΔMCWD) for 2005 and 2010 by first 

calculating the mean MCWD for the “baseline” period from 2000 to 2010, thereby excluding the years 2005 and 2010. To 

derive ΔMCWD, the baseline period is subtracted from the mean value of 2005 and 2010, respectively. The same procedure 

was applied for calculating ΔMCWD for 2016, extending the baseline period to from 2000 to 2016 and additionally 175 

excluding the year 2016. We excluded the drought years from the baseline period as the high proportion of drought years 

would bias the mean water stress (Lewis et al., 2011). We investigated also the effect of including drought years in the 

baseline calculation and the role of a longer baseline period (Fig. S1). Similar to Lewis et al. 2011, we defined ΔMCWD <
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 −25 mm as moderate drought stress because at this level, tree mortality already significantly increased in their inventory 

plots. We further defined ΔMCWD <  −100 mm as severe and ΔMCWD <  −150 mm as extreme drought stress. 180 

 

2.3.2. Calculation of rainfall anomaly index (RAI) 

For the rainfall anomaly index, dry season rainfall was taken as the mean precipitation from July-September following Lewis 

et al. (2011).  For each year, the ‘standardized anomaly’ was calculated as the anomaly of rainfall expressed as the difference 

in units of standard deviation from the mean dry season rainfall over all years. Like for to the MCWD calculation, we 185 

excluded the drought years 2005 and 2010 from the mean dry season precipitation calculation from a baseline period 2000-

2010 to investigate the drought impacts of 2005 and 2010, and for 2016 we selected a baseline period from 2000 to 2016 

excluding 2005, 2010 and 2016. We defined 𝑅𝐴𝐼 <  −1 to represent moderate, 𝑅𝐴𝐼 <  −2 to represent severe, and 𝑅𝐴𝐼 <

 −3 to represent extreme drought stress.  

 190 

2.3.3. Calculation of the self-calibrating Palmer Drought Severity Index (scPDSI) 

The self-calibrating Palmer Drought Severity Index (scPDSI, Wells et al., 2004) has in recent studies been used to assess the 

impacts of droughts on the Amazon basin (e.g. Jiménez-Muñoz et al., 2016). It improves the original PDSI by using a self-

calibrating procedure based on historical climate data, eliminating the empirically derived climatic characteristics. Next to 

precipitation, it also takes monthly potential evapotranspiration ET into account. In our study, we use ET data generated by 195 

the ER5 reanalysis. Additionally, the scPDSI takes soil water capacity as input, which we assumed here as a constant value 

of 100 mm. scPDSI was estimated using the R package scPDSI (Ruida et al., 2018).  

To enable comparison with the MCWD and RAI, we selected identical baseline periods from 2000 to 2010 for the 2005 and 

2010 events and from 2000 to 2016 for the 2016 drought event.  We also adopted the categorization from Jiménez-Muñoz et 

al. (2016) and Wells et al. (2004) with 𝑠𝑐𝑃𝐷𝑆𝐼 <  −2 representing moderate, 𝑠𝑐𝑃𝐷𝑆𝐼 <  −3 severe and 𝑠𝑐𝑃𝐷𝑆𝐼 <  −4 200 

extreme drought stress. 

2.3. Calculation of drought area and extent 

Each grid cell’s area was approximated as a trapezoid to its boundary coordinates (in 0.5° x 0.5° resolution), resulting in an 

area between 2900 and 3090 km² per grid cell. Accumulating the associated areas over all grid cells resulted in a total area of  

5.94 million km² representing the Amazon Basin. Note that for comparison of our results with Lewis et al. (2011) 205 

differences in absolute areas arise because of differences in study area size (5.94 vs. 5.3 million km², respectively). For the 

calculation of the drought-affected area, we summed up the area of grid cells that matched the respective drought 

classification (e.g. ΔMCWD <  −150 mm for extreme drought stress). The spatial agreement of drought location among 

datasets was estimated by selecting the grid cells matching the drought classification per dataset and subsequently counting 

the number of datasets per grid cells showing the respective drought classification.  210 
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2.4. Estimating carbon losses during drought events 

To estimate carbon loss during drought events, we used a simple linear relation between MCWD and carbon losses in the 

Amazon basin derived from plot measurements (Lewis et al., 2011): 215 

 

ΔAGB = 0.3778 - 0.052 * ΔMCWD         (2) 

 

Here, ΔAGB denotes the change in aboveground biomass, i.e. biomass carbon losses. The equation was derived from 

Amazon plot inventory data measured across the RAINFOR network to estimate the impact of the 2005 drought event 220 

(Lewis et al. 2011). To calculate ΔAGB in Eq. 2, we used the ΔMCWD of each gridcell for each drought year calculated for 

each of the precipitation datasets in our study. The total biomass carbon loss (in Pg C) across the Amazon basin is then 

calculated by summing up ΔAGB for all gridcells weighted by each gridcell’s size. 

 

  225 
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3. Results 

All areas in the following section are expressed as percentage with respect to the entire Amazon basin according to our 

delineation (5.94 million km²). For an overview of the areas affected in million km², see Table 2 and 3.  

3.1 Comparison of total drought area based on ΔMCDW 

We first evaluate differences in the two TRMM products, TR6 and TR7. For 2005 and 2010, we find similar spatial patterns 230 

for TR7, as in Lewis et al. 2011 for TR6 (Fig. 1a, b). Regarding drought intensities, TR7 agrees with its predecessor TR6 for 

2005, showing a slightly smaller area (4% less), but an 11% smaller area for 2010. ΔMCWD calculated from TR7 indicates 

that the North-Western region of the Amazon Basin (particularly the Roraima region) was hit extremely by drought stress in 

2016 with 7% of the area having ΔMCWD < −150mm (Fig. 1c). Furthermore, in 2016 about 15% of the basin was severely 

affected by drought stress located at the Western part and scattered in South-Eastern Amazonia. Moderate drought stress was 235 

found throughout 54% of the basin also affecting central and western Amazonia (Fig 1c). 

 

Across all precipitation datasets, in 2005, an area ranging from 46 to 71% (mean 53%) of the whole Amazon basin was 

moderately affected (Table 2, Fig. 2a). GSW and GLD displayed the smallest area affected by moderate drought (2.6 million 

km², Tab. 1, Fig. 2), while ER5 showed a vast affected area (4.2 million km²), an area about 12% larger than displayed by 240 

ERI.  For severe and extreme drought conditions, CHR shows the smallest affected area with 6% of the basin and no affected 

area, respectively. For severe drought conditions, CRU suggests that approximately 16% more of the basin area was affected 

in comparison to CHR (1.6 million km² vs. 0.4 million km²). CRU also encompasses the largest area of extreme drought 

stress (0.7 million km²; 12% of the basin less than ΔMCWD < −150mm).  

During the 2010 drought, a larger area was affected by moderate drought ranging between a minimum of 52% (GPC) and a 245 

maximum of 76% (TR6), which is about 10% larger than during the 2005 drought (3.1 million km² vs. 4.6 million km², Tab. 

2, Fig. 2). In addition, the area with severe drought extent was on average 3% larger compared to 2005. The area affected by 

extreme drought was smaller than during the 2005 drought. Particularly, ER5 and TR6 showed the largest area affected 

throughout the three drought classifications (Fig. 2b). 

 250 

For 2016, two datasets (CHR and CRU) showed with 40% a considerably smaller area that was moderately affected by 

drought compared to ER5 and ERI with 69% and 63% of the area affected, respectively (datasets ranging between 2.4 and 

4.1 million km²). Generally, in 2016, the size of the area affected by moderate drought was in between the size of the area 

affected 2005 and 2010, but the extent of severely and extremely drought-affected areas was larger. Here, particularly ERI 

(closely followed by ER5) showed the largest affected area, with 30% severely affected and 18% extremely affected.  255 
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3.2 Spatial agreement of rainfall datasets using ΔMCDW 

While the agreement of total area affected by drought is relatively high (see 3.1), the data sets are only partly in agreement 

regarding the spatial patterns and locations of the 2005, 2010 and 2016 droughts (Fig. 3). For 2005, all datasets are in 

agreement regarding the drought epicenter being located in Central Amazonia mainly affecting the Brazilian states 

Amazonas and Acre (Fig. S4 b, d).  All ten datasets also agree that an area of about 15 % of the Amazon Basin was at least 260 

moderately affected (Fig. 3a). Only a small overlap was found for the area affected by severe and extreme drought stress 

(Fig. 3b, c). Here, only half of the datasets agreed on 11% of central Amazonia being severely and 4% extremely affected. 

For 2010, all datasets agreed on an affected area of 11% in the Amazon basin, and half of the datasets agreed on an area of 

72% of the Amazon Basin being moderately affected by drought stress (Fig. 3d). The 2010 drought displayed no central 

hotspot, but three most affected areas in the Eastern, Southern and central part of Amazonia on which most of the datasets 265 

agreed (Fig. 3d). Severe drought stress in 2010 was located in the southern part of Amazonia, where four datasets agreed 

(Fig. 3e), while for extreme drought stress almost no overlap between datasets was found (Fig. 3f).  

For 2016, all datasets agreed on an area of about 8% for moderate drought stress and half of the datasets agreed on 54% of 

the basin being affected (Fig. 3g). Agreement for severe and extreme drought stress was higher compared to the other 

drought years (Fig. 3h, i). Most of the data sets located the epicenter of the drought in the North-Western part of Amazonia. 270 

Some datasets also showed the South-Central part of the basin being severely affected (Fig 3i). 

3.3 Estimating the variation of carbon losses during drought events 

For the different precipitation datasets and based on the linear relation between ΔMCWD and ΔAGB, we derive carbon 

losses for 2005 to be in the range of 1.3-1.9 Pg C with CHR showing the smallest and CRU the strongest impact regarding 

carbon losses (Fig. 4). The mean biomass loss over all datasets was 1.6 Pg C with six of the ten estimates from the different 275 

datasets being close to that mean (difference of ΔAGB less than 0.15 PgC to the mean value). For 2010, carbon losses range 

from 1.5 to 2.3 Pg C with WAT showing the smallest and TR6 strongest response. Next TR6 also ER5 shows a very strong 

drought impact with 2.3 PgC. All other datasets show much smaller impacts between 1.6 and 1.8 Pg C comparable to the 

2005 drought impact. The 2016 drought event shows the widest range of biomass loss across datasets ranging from 1.3 PgC 

to 2.5 PgC. The disagreement between datasets is also larger for 2016 compared to 2005 and 2010: Both, CRU and CHR 280 

show a low impact of 1.3 Pg C, TR7 and GPC show 1.7 Pg C biomass loss comparable to the averages of 2005 and 2010.  

GLD, ER5, and ERI show very strong impacts of 2.1, 2.3 and 2.6 Pg C, respectively.  

3.4 Comparison of drought indices: ΔMCDW, scPDSI and RAI 

Similar to ΔMCWD, there is variable agreement among datasets when evaluating the other two drought metrics, RAI and 

scPDSI (Fig. 5). scPDSI showed the lowest agreement across datasets, with mainly two datasets in agreement on areas 285 
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affected by drought for 2005. Regarding the total area affected in 2005, TR7 showed the largest area (48% of the Amazon 

basin, 2.8 million km²) and GLD (32%, 1.9 million km², Table 2) the smallest area affected by drought stress. Severe 

drought-stressed areas ranged between 16% (GLD) and 26% (CRU) and extreme drought stress between 1% (GLD) and 5% 

(CRU) of the basin affected. The largest rainfall anomaly (RAI) for moderate drought stress in 2005 was displayed by CHR 

with 52% (3.1 million km², Table 2), followed by ER5 with 49% of the area affected. CRU showed with 29% the smallest 290 

area affected by drought stress. The area of severe drought stress was smaller using RAI compared to scPDSI, ranging from 

9 to 20%. In general, the datasets displayed a more spatially connected area in the center of the Amazon basin when using 

RAI compared to scPDSI. RAI and MCWD agreed on the spatial location of the drought, while scPDSI showed severe 

drought stress in a different region (Fig 5a, d, g): Some areas showed a strong disagreement between drought indices, e.g. a 

small area in Western Brazil and Peru was hit by severe drought stress according to ΔMCWD and RAI (with all climate 295 

datasets in agreement). In contrast, scPDSI did not indicate abnormally dry conditions there. 

In 2010, the total droughted area was similar for scPDSI and smaller for RAI compared to MCWD regarding severe drought 

stress (Fig. 5b, e, h): For scPDSI, in particular, GLD showed a large area of 50% of the basin severely affected (2.9 million 

km², Table 2), followed by CRU showing 33% affected using scPDSI. The agreement between datasets was lower compared 

to the 2005 drought for both RAI and scPDSI. ΔMCWD and scPDSI showed similar areas in the southern Amazon Basin 300 

severely affected by drought. According to RAI, datasets agreed on the severely affected area in the North-Western part of 

Amazonia, diverting from the other indices (Fig 5h). 

For 2016, scPDSI showed the largest area affected by drought stress with GLD showing 62% (followed by TR7, 52%) of the 

basin being severely affected. Four datasets agreed on the affected area in the northeastern part of the basin (Fig. 5f). Hardly 

any drought stress was visible in 2016 when calculating rainfall anomalies (RAI, Fig 5i), indicating no pronounced 305 

anomalies in dry season rainfall. Only GLD diverted from the other datasets showing 30% of the area under severe drought 

stress, while all other datasets found between 0-1% of the area to be affected (Table 3). ΔMCWD and scPDSI again agreed 

on the spatial extent of the droughted area (Fig. 5c, f). Generally, scPDSI showed a much larger area severely affected by 

drought stress over ΔMCWD and RAI.  

Seasonal patterns of median ΔMCWD across the Amazon basin were consistent for 2005, where all datasets showed a 310 

sudden drought impact (decline in ΔMCWD) from July onwards. Only ERI and ER5 displayed a small decline already in the 

months before July. The 2010 drought followed similar patterns regarding ΔMCWD, with a lower absolute impact (Fig 6b). 

For 2015, datasets agreed on a small decline in ΔMCWD followed by a more substantial impact in 2016 with fewer datasets 

in agreement (Fig 6c). Datasets agreed well according to the seasonal patterns of scPDSI for 2005 and 2010 (Fig 6d, e). This 

agreement was lower for the year 2016, in which CRU, GLD and TR7 indicate drought stress already starting in January, 315 

and ERI and ER5 only starting in September (Fig. 6f). All datasets showed a period of drought stress for longer than 12 

months. Datasets generally agreed on rainfall anomaly (RAI) patterns for all of the drought years 2005, 2010, and 2016 (Fig. 
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6g, h, i). For 2005 the difference in rainfall was highest in June-July and for 2010 in March, August and September. The 

2015/2016 drought event showed a long period of strong (negative) rainfall anomaly from August 2015 to July 2016 (Fig. 

6i).  320 
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4. Discussion 

We assessed the severity and spatial extent of the extreme drought years 2005, 2010, and 2015/2016 in the Amazon region 

and their impacts on the carbon cycle. When analyzing drought representation in ten different precipitation datasets for the 

Amazon basin, we find that while the datasets mostly agree on the extent of the drought area, they differ in their location of 325 

drought. We show that biomass losses during 2005 and 2010 were about 1.8 PgC, indicating that the more intense drought in 

2005 equals a larger total area of the 2010 drought regarding biomass loss. In 2015/2016, we find a large variability of 

biomass losses depending on the precipitation dataset used, ranging from 1.3 to 2.7 PgC. 

 

Critical aspects regarding the detection of drought events in the Amazon basin 330 

Drought indices 

MCWD is one of the most widely used measures to assess drought stress in tropical forests (e.g. Lewis et al., 2011, Phillips 

et al., 2009, Esquivel‐Muelbert et al., 2019). The calculation of MCWD only requires precipitation data and assumes a 

constant evapotranspiration (ET) rate of 100 mm month-1 (Aragão et al., 2007). Although the simplicity of ΔMCWD is a 

main advantage, a fixed ET (which we also used in our study) is inappropriate for regions other than the lowland tropics, 335 

where the lower supply of energy may result in lower ET values. Most importantly, an approximated ET does not account 

for either seasonal variation (driven mainly by radiation, temperature and phenology) or spatial variation in ET related to soil 

and root properties (Malhi et al., 2009). Hence, changes in ΔMCWD are purely accounting for changes in rainfall (Phillips et 

al., 2009). In contrast, scPDSI is driven with spatially and temporally resolved evapotranspiration data (here: ER5). 

However, currently available evapotranspiration products for the Amazon rainforest show significant differences in areas 340 

and extent of evapotranspiration (Sörensson and Ruscica, 2018), hence introducing another source of uncertainty when using 

it for the calculation of drought indices.  

The key difference between the three drought indices applied in our study is the temporal resolution: RAI is only calculated 

for the three driest months (July-September) and thus, for example, a rainy season with deficient rainfall is not captured. 

ΔMCWD, in contrast, accumulates over 12 months and is reset to zero at the end of the hydrological year. In this way, 345 

drought events caused by low precipitation in both dry- and rainy season are captured, however, drought events lasting for 

longer than a year are not detected. scPDSI is not reset to zero at the end of the hydrological year and is thus captures also 

multi-year drought events. As an example, the 2015/2016 drought event is classified as a severe multi-year drought 

according to Yang et al. (2018), which is also displayed in our analysis when using scPDSI (all datasets in agreement that 

more than 30% of the area were affected, Tab. 3). ΔMCWD and RAI, however, do not agree on a spatially and temporally 350 

extensive drought event (Fig. 5c, f, g, Tab. 3), but instead display distinct regions of severe drought stress. Thus, this drought 

event seemed not to be characterized by particularly low dry-season precipitation, but by low precipitation accumulated over 

a longer time period. scPDSI and ΔMCWD roughly agreed on spatial extent but scPDSI showed a more substantial drought 

impact indicating that precipitation levels might have been already lower than usual during the years before the 2016 drought 
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event happened, indicating a multi-year drought event (Yang et al., 2018). Seasonal patterns of the three drought indices 355 

support this assumption (Fig. 6): Resetting MCWD once per year neglects any influences of drought events of the preceding 

year (Fig. 6c). 

A common drawback of all drought metrics used in our study is their incapability to explicitly represent the effect of 

increasing atmospheric vapor pressure deficit (VPD) on plant water stress. A steady amplification of atmospheric vapor 

pressure deficit (VPD) has been detected over the Amazon basin (Barkhordarian et al., 2019; Rifai et al., 2019). Such 360 

stronger atmospheric water demand leads to additional water loss of plants during drought, subsequently increasing the 

severity of droughts. Hence, the role of VPD during drought and as a driver for plant stress should not be underestimated 

(Grossiord et al., 2020). With increasing data availability and better estimates of VPD across the Amazon region, it should 

be included in future drought assessments (e.g. Castro et al., 2020). Furthermore, in the last decade, new methods have been 

developed that assess impacts of drought on ecosystems, e.g. analyses based on solar-induced fluorescence (SIF) data show 365 

that tall forests are less sensitive to rainfall compared to short forests (Giardina et al., 2018). Also, vegetation optical depth 

(VOD) used as a proxy for water content in forests is a promising satellite-derived indicator for mortality and impacts of 

droughts to forests (Rao et al., 2019). However, conducting analyses over the Amazon rainforest based on VOD is difficult, 

because VOD data across tropical regions is often noisy as the high cloud cover over the rainforests generates erroneous 

signals (Konings and Gentine, 2017). Future studies should estimate the impacts of droughts based on multiple drought 370 

characteristics, e.g. Toomey et al. (2011) show that considering both, heat stress and soil moisture stress greatly improves the 

explanatory power of drought impacts in the Amazon basin. 

 

Precipitation datasets 

For the three drought events in 2005, 2010 and 2016, ERI and ER5 diverted the most from the other datasets regarding the 375 

size of the area affected by drought. Especially ER5 shows the largest area of moderate drought stress during all three 

drought events (Fig. 2). Although TR7 and CHR are based on the same satellite data as the input, they differ regarding the 

size of the drought area, especially during 2016 (Fig. 2). Lewis et al. (2011) estimated an area of 47% (2.5 million km²) of 

the Amazon basin moderately affected in 2005 using the TR6 dataset, which compares well with the size of the affected area 

in the GLD, GPC, and GSW datasets analysed in our study (considering our 0.6 million km² larger study area; see Methods). 380 

For 2010, Lewis et al. (2011) reported an area of 3.2 million km² being affected in comparison to 4.5 million km² in our 

analysis using TR6 with very similar spatial patterns. The newer TRMM product, TR7, however, shows less frequent rainfall 

but heavier rainfall than CHR maintaining a similar total amount (Giles et al., 2020). Also, both TRMM versions (TR6 and 

TR7) differ regarding the total area affected by drought in 2005 and in particular in 2010 with TR6 showing a 14% larger 

area of the Amazon basin affected in our analysis. This can be explained by the generally higher precipitation rates detected 385 

in the TR7 dataset in comparison to TR6 (Seto et al., 2011) leading to lower absolute values of ΔMCWD. Spatially, this 

difference was most pronounced in the western and northern parts of Amazonia, in the Acre and Roraima states, and in Peru.  

Because of such higher precipitation rates in TR7 as compared to TR6, and subsequently the much stronger drought response 
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according to our analysis, studies only based on TR6 might overstate the actual drought conditions and should be revisited. 

Precipitation datasets usually show remarkable differences in the representation of occurrence, frequency, intensity and 390 

location of events, mainly due to their nature of high spatial and temporal variability (Covey et al., 2016; Dirmeyer et al., 

2012). Generally, the sparse network of observations in the Amazon rainforest may explain the differences across 

precipitation datasets and drought indices for datasets that rely on station data. Within the last decade, the number of 

observations increased, due to a new denser network of stations. This may improve the reanalysis models that are used for 

several precipitation datasets applied here, however, it does not improve datasets that only rely on gauge observations. 395 

According to Jiménez-Muñoz et al. (2016), 40%, 25% and 10% of the Amazon basin were affected by moderate, severe and 

extreme drought stress in March 2016 when using scPDSI, respectively. This is similar to our estimate (46%, 34% and 9%, 

moderately, severely and extremely affected in Sep 2016) based on the same precipitation dataset (ERI). Our estimate 

slightly diverted from the results of Jiménez-Muñoz et al. (2016), again at least partly due to a different reference area (see 

Methods). In addition, they used spatially resolved information on soil water capacity when calculating scPDSI and a longer 400 

baseline period (start year is 1979 in their study vs. 2000 in our study). scPDSI generally seems to be more sensitive to 

baseline changes (Fig S2e). In addition, also the choice of the precipitation dataset plays an important role. In regions, in 

which ER5 showed an extremely affected area of only 5%, other datasets such as GLD and TR7 showed a much stronger 

drought impact with over 70% of the area moderately and between 50% and 60% severely affected. This is particularly 

interesting because recent studies identify TR7, CHR and ER5 as best precipitation datasets when comparing to gauge 405 

observations in South America (Albergel et al., 2018; Burton et al., 2018; Rifai et al., 2019). The higher variability that 

scPDSI showed across datasets can be explained with the more complex algorithm (including the self-calibrating 

mechanism) compared to MCWD and RAI. 

 

Implications for estimating drought impacts on the carbon cycle of the Amazon rainforest 410 

Drought leads to increased tree mortality and carbon losses in tropical forests (Hubau et al., 2020; Lewis et al., 2011; Phillips 

et al., 2009). With the prospect of more severe and frequent droughts in a future climate, more precise estimates of how 

much carbon is lost from reductions in growth and drought-induced mortality are necessary. Currently, the Amazon 

rainforest is acting as a carbon sink, thereby removing CO2 from the atmosphere, but with more frequent and severe drought 

events, this sink is already declining (Hubau et al. 2020). Lewis et al. (2011) estimated a total loss of biomass for the 415 

Amazon basin in 2005 of 1.6 Pg C and a 38% more severe impact of 2.2 Pg C for 2010 based on TR6. When applied to the 

ΔMCWD derived from the precipitation datasets in our study, we calculate the loss of biomass of the 2005 drought event to 

be in the range of 1.3-1.8 Pg C, 1.5-2.3 Pg C in 2010 and 1.3-2.5 Pg C in 2016 (Fig. 4). This corresponds to approximately 

the average annual carbon uptake (1-2 PgC) per year, thus, turning the carbon sink into a carbon source. We acknowledge 

that our estimates are based on a relatively simple, empirically derived relation that does not take the biomass variability 420 

across the whole Amazon basin and individual forest/tree responses to drought into account. It however gives a rough 

estimate of potential carbon losses during drought and an idea of how much it varies depending on the precipitation datasets 
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applied in a study. In addition, we would like to note that the empirical biomass-MCWD relation from Lewis et al. (2011) 

has been estimated with constant ET=100 mm. When using evapotranspiration data (from ER5) for the calculation of 

MCWD, we find higher biomass losses (Fig. S2), and thus, the use of MCWD should be carefully viewed via its sensitivity 425 

to ET. In our analysis, MCWD appears to be robust against changes to some parameters, such as baseline period and 

inclusion/exclusion of drought years, but to be more sensitive to the evapotranspiration input. 

 

Furthermore, our estimated carbon losses for the drought events might be underestimated as (1) the total duration of the 

drought was longer than 12 months (see above paragraph and Fig. 6) and can hence not be fully captured by the standard 12-430 

month period of the MCWD calculation used in this study, and (2) potential lag effects through delayed plant mortality 

within the subsequent years are not considered so far. We would recommend for future studies to investigate the relationship 

of biomass losses with other drought indices (such as scPDSI) in a similar manner as done in Lewis et al. (2011). As the 

biomass of the Amazon rainforest is heterogeneously distributed (e.g. Saatchi et al., 2011), large-scale biomass-loss induced 

by drought (i.e. severe ΔMCWD) should be interpreted carefully. Differences in the amount of biomass in different forest 435 

types, species composition and critical hydraulic processes should be considered when estimating potential biomass losses 

under drought stress. A step forward would be to use for example remotely sensed biomass maps to account for regional 

biomass distributions (e.g. Avitabile et al., 2016) or to simulate drought impacts with dynamic global vegetation models 

(DGVMs). DGVMs simulate the carbon- and water cycle of the biosphere in a process-based way, accounting for the 

interplay of carbon uptake and water loss through stomatal opening, evapotranspiration (ET), carbon assimilation via 440 

photosynthesis, and carbon allocation to different plant compartments such as leaves, wood, and roots (e.g. Schaphoff et al., 

2018; Smith et al., 2014). The simulated response of tropical forests in DGVMs is particularly sensitive to precipitation input 

under present and future climate change scenarios (e.g. Seiler et al., 2015) and thus, it might be relevant to use multiple 

climate forcing datasets to test for climate data uncertainty. Particularly, studies based on ERI and TR6 should possibly be 

revisited and include another forcing dataset for their analysis. 445 

 

6. Conclusions 

We find substantial variation in the spatial extent, location and timing of the extreme drought events in the years 2005, 2010 

and 2016 in the Amazon basin. The variation partly results from the application of different drought metrics (MCWD, RAI, 

scPDSI) and from differences in the underlying precipitation datasets. Such differences also propagate when quantifying the 450 

impacts of drought on the carbon cycle of the Amazon rainforest and result in a large variability in biomass carbon losses, as 

we show in our analyses. This calls for the application of an ensemble of climate (precipitation) datasets and drought metrics 

when assessing the impacts of drought. Communicating the uncertainty in the estimation of drought events and their impacts 

on the Amazon rainforest is highly relevant and thus, multiple datasets should be applied by any large-scale study on drought 

impacts on vegetation. 455 
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Figures 

 710 

Figure 1: (a-c) Anomalies of ΔMCWD (from October to September) as an indicator for drought stress in the Amazon Basin 

during the record-breaking drought events in 2005, 2010 and 2015/16 based on the TR7 dataset. 
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 715 

 

Figure 2: Total area of the Amazon basin affected by drought stress (%) according to ΔMCWD for each of the precipitation 

datasets (for abbreviations see Tab. 1). Displayed are the three drought events (a) 2005, (b) 2010 and (c) 2016. The total area 

representing the Amazon basin in our study is 5.94 million km². For absolute area affected, see Tab. 2 and 3.  
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720 

 

 

Figure 3: Agreement of precipitation datasets on drought area as identified by ΔMCWD anomalies. In columns, different 

levels of drought severity are displayed and rows show the different drought years 2005 (a-c), 2010 (d-f) and 2016 (g-i). The 

colors indicate the number of datasets that agree on a specific drought level in a given pixel. Drought severity levels are 725 

defined as moderate (ΔMCWD < -25mm), severe (ΔMCWD < -100mm) and extreme (ΔMCWD < -150mm). Orange pixels 

indicate areas where only dataset shows the respective drought stress (No agreement = “None”). White pixels represent areas 

where no dataset shows any drought signal. Note that in a-f, TR6 and GSW were excluded, as they were either very similar 

to its successor (TR7) and or due to a similar reanalysis procedure (WAT). In g-i, only seven datasets were included, which 

cover the full time period until 2016. 730 
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Figure 4: Agreement of precipitation datasets on drought area as identified by different drought metrics. Comparison of the 

Amazon drought events in 2005, 2010 and 2016 (columns) vs three different drought indexes (rows): ΔMCWD (a-c), 735 

scPDSI (d-f) and rainfall anomaly (g-i). Only the area affected by severe drought stress is displayed, severe drought is 

defined differently for each of the drought indices: ΔMCWD less than -100mm, scPDSI less than -3 and RA less than -2. 

Orange pixels indicate areas where only one dataset shows the respective drought stress (“None”). White pixels represent 

areas where no dataset shows any drought signal.  
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 740 

 

Figure 5: Monthly development of the Amazon drought events in 2005, 2010 and 2016 (columns) as described by the three 

different drought indices (rows): ΔMCWD (a-c), scPDSI (d-f) and rainfall anomaly (RA, g-i). Colored lines indicate the 

different precipitation datasets (for abbreviations see Tab. 1). RA is estimated for each month.  
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Figure 6: Impact of the 2005, 2010 and 2016 drought event on aboveground carbon biomass (AGB in Pg C). Biomass loss 750 

was calculated for each of the precipitation datasets (colored dots, for abbreviations see Tab. 1) based on a linear relation 

between biomass loss and ΔMCWD as proposed by Lewis 
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Tables 

Table 1: Overview of the 10 precipitation datasets used in our study. Columns show the name of the dataset, the 755 

official abbreviation, the short abbreviation used in here, the spatial and temporal resolution and the references. 

Precipitation 

dataset 

Abbreviation  Abbreviation 

(short) 

Details Resolutions References 

Climate Hazards 

group Infrared 

Precipitation with 

Stations 

CHIRPS CHR quasi-global (50°S-

50°N) 

precipitation-only 

merged product, 

based on global 

climatology, 

satellite estimates 

and in situ 

observations. 

high resolution 

(0.05°), daily, 

pentadal, and 

monthly  

Funk et al., 

2015 

Tropical Rainfall 

Measurement 

Misson 

TRMM v6 

3b43 

TR6 quasi-global (50°S-

50°N) 

Quarter degree 

resolution (0.25°) 

daily, pentadal, 

and monthly 

Huffman et al.,  

2007 

Tropical Rainfall 

Measurement 

Misson 

TRMM v7 

3B43 

TR7 quasi-global (50°S-

50°N) 

Quarter degree 

resolution (0.25°), 

daily, pentadal, 

and monthly 

Huffman et al.,  

2007 

 CRU_NCEP  

V8 

CNP global Half degree 

resolution (0.5°), 

daily, pentadal 

and monthly 

Viovy et al.,  

2017 

ERA_Interim ERA_Interim 

SFC12_03_T

P_228 

ERI global 0.75° daily, 

pentadal, and 

monthly 

Dee et al., 

2011 
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ERA5  ER5 global Quarter degree 

resolution (0.25º), 

sub-daily, daily, 

monthly 

Albergel et al., 

2018 

Global Land Data 

Assimilation 

System 

GLDAS 2.1 

 

GLD global Quarter degree 

resolution (0.25°), 

daily, pentadal, 

and monthly 

Rodell et al., 

2004 

Global 

Precipitation 

Climatology 

Centre at 

Deutscher 

Wetterdienst 

GPCC2018 GPC global Quarter degree 

resolution (0.25°), 

monthly 

Schneider et 

al., 2018 

Global Soil 

Wetness Project 

Phase 3 

GSWP3 GSW global Half degree 

resolution (0.5°), 

daily, monthly 

H. Kim et al. 

n.d.; 

http://hydro.iis

.u-

tokyo.ac.jp/GS

WP3/index.ht

ml 

WATCH Forcing 

Data (WFD) + 

WATCH Forcing 

Data 

methodology 

applied to ERA‐

Interim data 

(WFDEI) 

WATCH_W

FDEI 

WAT global Half degree 

resolution (0.5°), 

daily, monthly 

Weedon et al., 

2011, 2014 
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Table 2: Total area affected by drought stress in million km² (and %) by drought index (MCWD, scPDSI and RAI) 

and intensity (moderate, severe and extreme) across the 10 datasets evaluated in our study (rows) for the years 2005 760 

and 2010. 

 

  Year 

  2005 2005 2005 2010 2010 2010 

Metric Dataset 𝛥𝑀𝐶𝑊𝐷 <

 −150𝑚𝑚  

(extreme) 

𝛥𝑀𝐶𝑊𝐷 <

 −100𝑚𝑚  

(severe) 

𝛥𝑀𝐶𝑊𝐷 <

 −25𝑚𝑚  

(moderate) 

𝛥𝑀𝐶𝑊𝐷 <

 −150𝑚𝑚  

(extreme) 

𝛥𝑀𝐶𝑊𝐷 <

 −100𝑚𝑚  

(severe) 

𝛥𝑀𝐶𝑊𝐷 <

 −25𝑚𝑚  

(moderate) 

ΔMCWD CHR 0.0 (0%) 0.4 (6%) 3.1 (52%) 0.2 (3%) 0.9 (14%) 3.8 (63%) 

ΔMCWD CRU 0.7 (12%) 1.3 (22%) 3.1 (53%) 0.2 (3%) 0.7 (12%) 3.6 (61%) 

ΔMCWD ER5 0.1 (2%) 0.7 (13%) 4.2 (71%) 0.3 (5%) 1.3 (23%) 4.6 (78%) 

ΔMCWD ERI 0.3 (4%) 1. (17%) 3.5 (59%) 0.3 (5%) 1. (17%) 3.2 (54%) 

ΔMCWD GLD 0.3 (5%) 0.9 (14%) 2.8 (46%) 0.1 (2%) 1.1 (18%) 3.9 (65%) 

ΔMCWD GPC 0.4 (7%) 1. (17%) 2.8 (47%) 0.3 (5%) 1.0 (16%) 3.1 (52%) 

ΔMCWD TR6 0.2 (4%) 0.9 (15%) 3.2 (55%) 0.4 (6%) 1.7 (28%) 4.5 (76%) 

ΔMCWD TR7 0.3 (4%) 0.7 (12%) 3. (51%) 0.2 (3%) 1.1 (18%) 3.9 (65%) 

        

ΔMCWD GSW 0.5 (8%) 1.0 (17%) 2.9 (48%) 0.3 (5%) 1.1 (18%) 3.5 (58%) 

ΔMCWD WAT 0.5 (8%) 1.1 (18%) 2.9 (49%) 0.2 (4%) 0.9 (15%) 3.3 (55%) 

  𝑠𝑐𝑃𝐷𝑆𝐼 <

 −4  

(extreme)  

𝑠𝑐𝑃𝐷𝑆𝐼 <

 −3  

(severe)  

𝑠𝑐𝑃𝐷𝑆𝐼 <

 −2  

(moderate)  

𝑠𝑐𝑃𝐷𝑆𝐼 <

 −4  

(extreme)  

𝑠𝑐𝑃𝐷𝑆𝐼 <

 −3  

(severe)  

𝑠𝑐𝑃𝐷𝑆𝐼 <

 −2  

(moderate)  

scPDSI CHR 0.2 (3%) 1.2 (20%) 2.5 (42%) 0.2 (3%) 2. (34%) 3.2 (55%) 

scPDSI CRU 0.3 (4%) 1.5 (26%) 2.3 (38%) 0.1 (2%) 2. (33%) 3.1 (52%) 

scPDSI ER5 0.1 (1%) 1.1 (18%) 2.8 (46%) 0.1 (1%) 1.6 (27%) 3.1 (52%) 

scPDSI ERI 0.0 (1%) 0.8 (13%) 1.7 (29%) 0. 0(1%) 1.2 (20%) 2.1 (35%) 

scPDSI GLD 0.2 (3%) 1.0 (16%) 1.9 (32%) 0.2 (3%) 2.9 (50%) 4.2 (71%) 

scPDSI GPC 0.1 (2%) 1.5 (25%) 2.6 (43%) 0.1 (3%) 1.9 (32%) 3. (51%) 

scPDSI TR6 0.3 (5%) 1.5 (25%) 2.8 (48%) 0.2 (3%) 1.9 (32%) 3.2 (54%) 

scPDSI TR7 0.3 (5%) 1.5 (25%) 2.8 (48%) 0.2 (3%) 1.9 (32%) 3.2 (54%) 

scPDSI GSW 0.2 (3%) 1.6 (26%) 2.6 (44%) 0.2 (3%) 1.8 (31%) 3.1 (52%) 

scPDSI WAT 0.2 (3%) 1.5 (26%) 2.6 (44%) 0.2 (3%) 1.8 (30%) 3. (51%) 
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  𝑅𝐴 <  −3  

(extreme) 

𝑅𝐴 <  −2  

(severe) 

𝑅𝐴 <  −1  

(moderate) 

𝑅𝐴 <  −3  

(extreme) 

𝑅𝐴 <  −2  

(severe) 

𝑅𝐴 <  −1  

(moderate) 

RA CHR 0.3 (6%) 1.2 (20%) 3.1 (52%) 0.2 (3%) 1. (17%) 3.6 (60%) 

RA CRU 0.1 (2%) 0.6 (9%) 1.8 (29%) 0.1 (1%) 1. (17%) 3. (50%) 

RA ER5 0.3 (4%) 1.1 (18%) 2.9 (49%) 0.4 (6%) 1.7 (28%) 4.2 (71%) 

RA ERI 0.6 (10%) 1.1 (18%) 2.5 (42%) 0.2 (3%) 1.0 (16%) 2.7 (45%) 

RA GLD 0.2 (4%) 0.7 (12%) 1.7 (29%) 0.6 (9%) 1.2 (21%) 3.4 (57%) 

RA GPC 0.2 (4%) 0.7 (11%) 2.2 (36%) 0.1 (2%) 0.7 (12%) 2.7 (46%) 

RA TR6 0.1 (2%) 0.6 (11%) 2.4 (41%) 0.1 (2%) 1.3 (22%) 3.7 (63%) 

RA TR7 0.2 (3%) 0.9 (15%) 2.8 (47%) 0.2 (4%) 1.2 (20%) 3.3 (56%) 

RA GSW 0.2 (4%) 0.7 (11%) 2.1 (36%) 0.2 (3%) 0.9 (16%) 3.1 (52%) 

RA WAT 0.3 (4%) 0.7 (12%) 2.2 (37%) 0.1 (2%) 0.8 (13%) 2.8 (47%) 

 

 

Table 3: Total area affected by drought in million km² (and %) by drought index (MCWD, scPDSI and RAI) and 765 

intensity (moderate, severe and extreme) across the 10 datasets evaluated in this study (rows) for the year 2016. TR6, 

GSW and WAT are missing from this calculation as their timespan ends before 2016. 

 

  2016 2016 2016 

Metric Dataset 𝛥𝑀𝐶𝑊𝐷 

<  −150𝑚𝑚 

(extreme) 

𝛥𝑀𝐶𝑊𝐷 

<  −100𝑚𝑚 

(severe) 

𝛥𝑀𝐶𝑊𝐷 

<  −25𝑚𝑚 

(moderate) 

ΔMCWD CHR 0.4 (6%) 0.8 (13%) 2.4 (40%) 

ΔMCWD CRU 0.3 (5%) 0.7 (11%) 2.4 (41%) 

ΔMCWD ER5 0.7 (12%) 1.7 (28%) 4.1 (69%) 

ΔMCWD ERI 1.1 (18%) 1.8 (30%) 3.8 (63%) 

ΔMCWD GLD 0.5 (8%) 1.6 (27%) 3.6 (61%) 

ΔMCWD GPC 0.3 (6%) 0.9 (15%) 3.2 (54%) 

ΔMCWD TR7 0.4 (7%) 0.9 (15%) 3.2 (54%) 

  𝑠𝑐𝑃𝐷𝑆𝐼 <  −4  

(extreme)  

𝑠𝑐𝑃𝐷𝑆𝐼 <  −3  

(severe)  

𝑠𝑐𝑃𝐷𝑆𝐼 <  −2  

(moderate)  

scPDSI CHR 0.3 (4%) 2.3 (38%) 3.3 (56%) 

scPDSI CRU 0.3 (5%) 2.6 (45%) 3.7 (62%) 
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scPDSI ER5 0.3 (5%) 2.1 (35%) 2.9 (48%) 

scPDSI ERI 0.5 (9%) 2. (34%) 2.7 (46%) 

scPDSI GLD 0.9 (15%) 3.7 (62%) 4.2 (70%) 

scPDSI GPC 0.4 (7%) 2.3 (39%) 3.2 (55%) 

scPDSI TR7 0.6 (11%) 3.1 (52%) 4.2 (71%) 

  𝑅𝐴 <  −3  

(extreme) 

𝑅𝐴 <  −2  

(severe) 

𝑅𝐴 <  −1  

(moderate) 

RA CHR 0.0 (0%) 0.1 (2%) 0.5 (8%) 

RA CRU 0.0 (0%) 0.0 (0%) 0.3 (5%) 

RA ER5 0.0 (0%) 0.0 (0%) 0.5 (9%) 

RA ERI 0.0 (0%) 0.0 (1%) 0.9 (15%) 

RA GLD 0.6 (10%) 1.8 (30%) 3.2 (54%) 

RA GPC 0.0 (0%) 0.0 (0%) 0.7 (12%) 

RA TR7 0.0 (0%) 0.1 (1%) 0.9 (14%) 
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